
© 2015 IBM Corporation

Hyperledger fabric:
towards scalable blockchain for business

Marko Vukolić, IBM Research - Zurich

Trust in Digital Life
The Hague, Netherlands, June 17 2016

© 2015 IBM Corporation

Blockchain – shared, replicated, ledger

Counter-party
records Bank records

Party C’s Records Auditor records

Party B Records

Party A’s Records

Ledger

Ledger

Ledger

Ledger

Ledger

Ledger

Participants
have possibly
multiple shared
ledgers

Consensus
protocol ensures
ledger replicas
are identical*

© 2015 IBM Corporation

What is a Blockchain?

• A chain (sequence) of blocks of transactions
- Each block consists of a number of transactions

• Bitcoin transactions
- simple virtual cryptocurrency transfers
- (address A, address B, amount)

• Transactions do not have to be simple nor related to cryptocurrency
- E.g., smart contracts (Ethereum)
- chaincode (Hyperledger)

3

#234 #235 #236…#1
#0

Genesis
block

© 2015 IBM Corporation

Growing Proof-of-Work (PoW)-based Blockchain

§ Block “mining”:
─ Every participant (“miner”) tries to find nonces
─ such that the hash of the block h is lower than a 256-bit target

§ Bitcoin
─ Target dynamically adjusted: 1 block generated roughly every 10 minutes
─ Already in 2014, this required more than 280 expected hashes

4

#234… #235 #236

A =hash of block #236
B = Root hash of

Merkle tree of tx
hashes

C = nonce 1
D = nonce 2

Block #237

Transactions
(payload)

h = hash of Block #237 = SHA256(A||B||C||D)

© 2015 IBM Corporation

Example (longest/most difficult chain wins)

5

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

© 2015 IBM Corporation6

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

Orphaned block

Example (longest/most difficult chain wins)

© 2015 IBM Corporation

Implications and the performance issue

PoW way of extending the ledger heavily and negatively impacts
system scalability and overall throughput

§ Bitcoin: With 1 block every 10 minutes and fixed block size of 1 MB
─ Peak throughput: only 6-7 tx/sec
─ Latency (of 6 block confirmations): about 1h

§ Better performance by tuning PoW parameters?
─ shorter block generation times (increasing block frequency)?
─ larger blocks?
─ Different conflict resolution rules?
─ Limited benefits, potentially weaker security

7

© 2015 IBM Corporation

Introducing smart contracts/chaincode

Modern crypto ledgers (e.g., Ethereum, Hyperledger)

aim at supporting “smart contracts” or “chaincodes”

A smart contract is an event driven program, with state, which runs on a
replicated, shared ledger and which can take custody over assets on that

ledger. [Swanson2015]

“Smart contract” à (replicated) state machine

8

© 2015 IBM Corporation

State machine replication (SMR)

§ Classical Distributed Computing problem

What machine faults?

§ Crash faults (CFT): A machine simply stops execution and halts
─ Paxos, RAFT, Zookeeper AB,…

§ Non-crash (a.k.a. Byzantine) faults (BFT)
─ A model that cryptocurrencies adopt

9

#234… #235 #236

#237
A

#237
B

#238
B

#239
B

No forks!

© 2015 IBM Corporation

BFT Consensus (example of PBFT [TOCS2002])

10

Party A (leader)

Party B
Party C

Party D

Tx1

Commit the block to the
local copy of blockchain
(if 2f+1 out of 3f+1 agree)

Many other things burden the implementation (it is not simple as it might look)
• Leader election
• State transfer (new, slow Party)
• Reconfiguration

Tx2
Tx3
Tx4

Seq #24
View no

Validate the block
… #21 #22 #23 Tx1

Tx2
Tx3
Tx4

Seq #24
View no

© 2015 IBM Corporation

PoW vs. SMR for Blockchain (simplified overview)

11

Proof of Work (Bitcoin, Ethereum,...) State machine replication (Ripple, Hyperledger, …)

Membership
type

Permisionless Permissioned

User IDs
(Sybil attack)

Decentralized, Anonymous
(Decentralized protection by PoW
compute/hash power)

Centralized, all Nodes know all other Nodes (Centralized
identity management protects against Sybil attacks)

Scalability
(no. of Nodes)

Excellent, >100k Nodes Verified up to few tens (or so) Nodes
(scalability limits not well explored)

Scalability
(no. of Clients)

Excellent Excellent

Latency Poor, up to 1h Depends on the implementation/deployment (order of ms)

Throughput 7 tx/sec upper bound (Bitcoin) >10k tx/sec with existing implementations in software

Power
efficiency

>1 GW (Bitcoin) Good (commodity hardware)

Temporary
forks in
blockchain

Possible (leads to double-spending
attacks)

Not possible

Consensus
Finality

No Yes

Open research problem:
Given the use case, network, no. of nodes

What is the most suitable and scalable Blockchain technology/protocol?

© 2015 IBM Corporation12

Marko Vukolić.The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT Replication
Proceedings of the 2015 International workshop on open problems in network security (iNetSec 2015).

© 2015 IBM Corporation13 https://www.hyperledger.org/
https://github.com/hyperledger

© 2015 IBM Corporation

Existing blockchains unify many functionalities in one node

This limits achievable performance and harms scalability
At odds with confidentiality

Transaction validation

Ledger/state
maintenance

Consensus
logic

Smart contract execution

© 2015 IBM Corporation

Hyperledger fabric v2 – architecting a scalable blockchain
§ Hyperledger fabric v2 (late 2016/early 2017)

─ Separation of concerns

Consensus fabric

Architecture-level approach to scalable and confidential blockchain
Goal: Towards hundreds of consenters/peers running many thousands tps
https://github.com/hyperledger/fabric/wiki/Next-Consensus-Architecture-Proposal

Chaincode A
execution

Chaincode A
validation

Chaincode B
execution

Chaincode B
validation

© 2015 IBM Corporation

Blockchain fabric comparison

Feature Attribute Bitcoin
(digital cash)

Ripple
(inter-bank
remittances)

Ethereum
(distributed
applications)

Hyperledger fabric
(generic blockchain
fabric)

Open Membership Permissioned
vs.

Permissionless

Permissionless Permissioned Permissionless Permissioned

No transaction, once verified, can be
changed by any party

Consensus
algorithm

Proof of work (custom-made)
Byzantine fault-
tolerant (BFT)
consensus

Proof of work,
Proof of stake

Pluggable consensus
framework
(currently: proven
practical BFT)Prevention of asset double-spending

Business logic can self-execute with
assurance that the terms can not be
altered by any party without
agreement from stakeholders

Smart contracts
support

Very limited
(stack-based
scripting language)

None
(had Codius, but
discontinued)

Solidity
domain
specific
language
(DSL) (Turing-
complete)

Go (golang),
Java (in progress)
+
Support for other
languages and DSLs
envisioned in future

Transaction execution evolves
around a blockchain-specific digital
currency

Native
cryptocurrency

Yes (BTC) Yes (XRP) Yes (ETH) No

Transaction confidentiality
Encryption,

key-distribution
Cryptographic
mechanisms

No No Smart contract
level
confidentiality

Smart contract
(chaincode) level +
fabric-level confidentiality

https://github.com/hyperledger/fabric

©2016 IBM Corporation

Thank You!

© 2015 IBM Corporation

Hyperledger (v2) transaction flow

client (C) submitting
peer (SP)

endorsing
peer (EP1)

endorsing
peer (EP2)

endorsing
peer (EP3)

peer (P1)

consensus	service

consenters

Simulate/Execute	 txPayload
Compute	
verDep
stateUpdate

Simulate/Execute	 txPayload
Verify	

verDep
stateUpdate

Sign	TRANSACTION-VALID

Collect	
TRANSACTION-VALID	sigs
into	endorsement
to	satisfy
endorsementPolicy
(chaincodeID)

1

2

3

4

5

Verify	
verDep,	endorsement

If	OK
apply	stateUpdates

5

Consensus service API:
• Broadcast(blob) blob=(tran-proposal, endorsement)
• Deliver(seqno,prevHash,blob)

4
5

<TRANSACTION-VALID, txID,sigEPi>3

<SUBMIT,cID,chaincodeID,txPayload,sigC>1
<PROPOSE,txPayload,tran-proposal,sigSP> (tran-proposal := (spID,clientID,chaincodeID,HASH(txPayload),stateUpdate,verDep))2

